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Abstract—Road extraction from satellite imagery is essential
for applications such as urban planning and infrastructure
development. In this project, we propose a machine learning-
based approach to extract road networks from high-resolution
satellite images, producing accurate representations of road
structures.

The process begins with pre-processing high-resolution satel-
lite images to reduce noise and enhance clarity through
normalization and contrast adjustment. We use a lightweight
U-Net, a convolutional neural network (CNN) architecture,
to segment road networks. The lightweight U-Net’s encoder-
decoder structure with skip connections enables precise seg-
mentation by learning from ground truth masks while main-
taining computational efficiency.

The proposed method is evaluated using multiple satellite im-
agery datasets in various regions and conditions. Performance
is assessed using precision and F1-score, which demonstrate
the accuracy and reliability of the approach.

Overall, our methodology provides an efficient solution for
road extraction, offering valuable insights for urban planning,
transportation management, and emergency response. By pro-
viding accurate road maps, this approach supports improved
spatial data analysis and decision-making processes.

I. INTRODUCTION

High-resolution satellite imagery has revolutionized fields
such as urban planning, transportation management, and
disaster response. Road extraction plays a critical role in
these areas by enabling the creation of accurate and up-to-
date road maps. However, it remains a challenging task due
to varying land cover types, environmental conditions, and
imaging artifacts.

Traditional road extraction methods are often manual
or rely on basic image processing, making them time-
consuming and error-prone. With advancements in machine
learning, particularly deep learning, automated approaches
have become more accurate and scalable. In this project,
we develop a lightweight U-Net-based method for road
extraction. U-Net’s encoder-decoder structure with skip con-
nections enables precise segmentation of road networks
while maintaining computational efficiency by learning from
ground truth masks.

As part of this student project, we also use the 100
images provided in the dataset to evaluate our approach.
While the outcomes are primarily academic and do not have
direct real-world applications, they demonstrate the potential
of automated methods for road extraction. We assess our
model’s performance using metrics such as precision and
F1-score to ensure accuracy and reliability.

The results provide insights into the feasibility of machine
learning for road extraction, contributing to ongoing research
efforts in satellite image analysis and segmentation.

II. ETHICAL RISKS

The main benefit offered by our solution is the ability
to automatically extract roads from satellite images, which
is especially useful for areas that are difficult to access or
change often. However, this benefit should not overshadow
the ethical risks that such a solution can cause. To address
this ethical aspect, we will focus on the sustainability of
our solution. It is a well-documented fact that training large
neural networks - a computationally heavy task - requires
a lot of energy [1]. This energetic aspect is more important
than ever, as global warming and its effects are central issues
affecting everyone in today’s world. In particular, because
the resources consumed by our computing technologies are
not directly visible when using them, this ecological issue
is often underestimated in the field of computer science. Of
course, while our model doesn’t have the scale of large lan-
guage models such as GPT-4 and its trillions of parameters,
we still believe that smaller models should take this question
seriously. To mitigate the impact of our project, we will try
to reduce its carbon footprint, as CO2 emissions are one of
the main causes of climate change. Most of the ecological
impact of our solution will happen during development, in
the training phase of the model. To monitor the carbon
footprint of this step, we use the carbontracker [2] library.
This tool gives an estimate of the energy consumption and
CO2 emissions of the training process, as well as what
distance driven by car it corresponds to. Furthermore, to
mitigate the carbon footprint of our model, we chose to
use a lightweight version of the selected U-Net architecture,
reducing the number of parameters of the model. The goal is
to reduce training time and energy consumption. In the end,
our training phase performed on Google Colab took around
20 minutes, and carbontracker reported an energetic cost of
0.033 kWh, equivalent to 15.8 g of CO2. This corresponds
to around 150 meters traveled by car which seems totally
acceptable.

III. DATASET DESCRIPTION

For this project, we were provided with a dataset of 100
RGB training images each of size 400x400 pixels. Initially,
we considered using the DeepGlobe 2018 Road Extraction
dataset [3], which is designed for semantic segmentation



tasks and has applications in urban planning, geospatial anal-
ysis, and the environmental industry. The dataset consists
of 8570 images with pixel-level annotations for a single
class: roads. Of these, 6226 images are labeled, while 2344
images remain unlabeled. The dataset is split into three
subsets: train (6226 images), validation (1243 images), and
test (1101 images). It was released in 2018 by Facebook,
DigitalGlobe, CosmiQ Works, Wageningen University, and
The MIT Media Lab. For this project, we only considered the
6226 labeled images and their adequate masks. After running
the lightweight U-net model on the augmented dataset and
on the original one, we noticed the F1 score didn’t improve
and we suspect the reason for it is that the images from
DeepGlobe originally were of size 1024x1024 and had to be
resized to match the size of the given dataset. Furthermore,
since we had to use Colab and we wanted to minimize the
carbon print of our model, we decided to only train on the
provided 100 images and not use DeepGlobe at all. We
mention it here and give a reference for those people who
want to train our model on a different and maybe larger
dataset.

IV. MODEL DESCRIPTION
A. Baseline model

As a baseline model, we decided to start with a simple
logistic regression model, trained on the 100 provided im-
ages. The images are split into patches of 16x16 pixels each.
We then extract 3 features for each patch: median, mean,
and variance of the pixels. Since the images are RGB, there
are 3 channels per patch, which gives a total of 9 features
per patch. To enrich our set of features, we use polynomial
expansion of degree up to 2 and end up with a total of 55
features. Finally, we train a logistic regression to predict the
class of each patch (road or background) and recombine the
predicted patches into our final mask. With an 80-20 train-
validation split, this model achieves an Fl-score of 0.55 on
the validation set, with 0.77 recall and 0.67 accuracy. These
results are already pretty good for such a simple model, and
our aim is to beat them with a more complex approach. See
Figure [T] for an example output of the baseline model. The
red parts represent where the model detects a road.

B. Lightweight U-Net

To achieve better results, we decided to go with a U-Net
architecture. U-Net models are convolution neural networks
specialized in image segmentation. They also have the
advantage of achieving good results with only a few training
samples [4]. Our implementation is a lightweight version
of this architecture which is computationally efficient as its
architecture combines the principles of the U-Net design
with depthwise separable convolutions [5] to reduce the
model’s parameter count and computational overhead, mak-
ing it suitable for use in resource-constrained environments
such as our case with only 100 training images. We will now
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Figure 1. Example output from the baseline model

briefly describe the architecture of the proposed model: each
convolutional layer is replaced with a depthwise separable
convolution, which splits the convolution process into two
stages:

o Depthwise convolution: Performs spatial filtering inde-
pendently on each input channel.
o Pointwise convolution: Combines channel-wise infor-
mation using 1 x 1 convolutions.
This significantly reduces the number of parameters and
computations while maintaining performance. The encoder
extracts hierarchical features from the input image. It con-
sists of four Encoder Blocks, each comprising of two depth-
wise separable convolutional layers with batch normalization
and ReLU activation as well as a max-pooling layer for
spatial downsampling. The decoder reconstructs the output
resolution using Decoder Blocks. Each block consists of:
« An upsampling operation via a transposed convolution
to double the spatial resolution.
« A concatenation of the upsampled feature map with the
corresponding skip connection from the encoder.
« Two depthwise separable convolutional layers with
batch normalization and ReLU activation.
Output Layer: The final layer is a 1 x 1 convolutional
layer that maps the decoder’s output to the desired number
of classes for pixel-level prediction.

V. PARAMETER SELECTION

For the lightweight model, the main challenge was to
extract the optimal values for epochs, learning rate, and
threshold values for the predicted masks. We started with
an analysis of the effect of the learning rate on the F1 score
and as we can see in Figure 2] the best learning rate is 0.001.
Upon establishing this first parameter, we then focused on
trying to find the optimal number of epochs so that we
minimize the carbon print of the training process. As we can
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Figure 2. F1 Score for different learning rates with constant epochs number
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Figure 3. Best parameters

see in Figure [ running the model for 40 epochs produces a
higher F1 score than running it for 50. However, we noticed
that running the model for 100 epochs results in a better F1
score on the AiCrowd platform even though on the validation
set, the scores are close. We thus decided to go with 100
epochs to provide a maximum F1 score. Finally, we tried
to establish the best threshold for a higher F1 score, and in
Figure [3] we can see that the optimal threshold is 0.632. In
the figure, we don’t see the differences between the F1 scores
due to the number of decimal places but the one highlighted
in red is the maximum F1 score. So in the final version, we
have a model that runs for 100 epochs with a learning rate
of 0.001 and the threshold for the predictions is 0.632.

VI. RESULTS

The model takes about 20 minutes to run on Google Colab
and produces 50 predictions for the provided 50 test images.
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Figure 5. Example output from the final model

The F1 score in AiCrowd is 0.845 while the local one on the
validation set is 0.92. Each prediction is a black-and-white
mask where the white pixels represent the roads and the
black represents anything else in the test image. See Figure
[] for an example output of the final model. The red parts
correspond to the pixels labeled as roads by the model.

VII. CONCLUSIONS

In this report, we analyzed the dataset from DeepGlobe
as well as our provided dataset of 100 images and ground
truth. We explained the training process and how we came
to select the best parameters. We also introduced and talked
about the ethical risks of this project and ML projects in
general. We provided some details on the baseline compared
to lightweight U-Net approach that we used. Based on the
current feedback, we believe that expanding the original
dataset with the DeepGlobe datasets will yield more accurate



results that can be efficiently applied in different research ar-
eas, leading to new exciting developments at the intersection
of computer vision, machine learning, remote sensing, and
geosciences.
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