
CS-523 SMCompiler Report
Florian Delavy , Endrit Vorfaj

Abstract—Secure Multiparty Computation (SMC) enables
multiple parties, each having access to fragments of the data
we want to keep private, to jointly compute a specific outcome.
This fragment is referred to as a ”Share” in our work and a
”Share” can either be a ”Secret” or it can be a ”Scalar”, which
needs not be kept private. By combining their shares, the final
result is computed without revealing the nature or content of
their inputs or any other confidential information involved in
the process. We build our SMC framework under an Honest-but-
Curious threat model, which assumes that parties do not deviate
from their intended behaviour in the protocol. Additionally, we
provide performance metrics of the circuit in terms of the number
of parties and operations, along with a real-world use case of the
implemented SMC framework.

I. INTRODUCTION

In this project, we both collaborated closely on all as-
pects. However, each individual focused on specific areas
while getting constant support from the other. F.D primarily
contributed to the expression class, addition and multi-
plication of scalars (along with interactions involving their
sub-expressions) in the smc_party class, and performance
measurement tests in metrics. On the other hand, E.V
concentrated on beaver multiplication within smc_party,
ttp and secret_sharing, as well as code for measuring
time and bytes sent and received. Both team members jointly
conducted tests, developed the application, and authored the
report.

II. THREAT MODEL

The threat model of our SMC framework considers all
parties to be honest-but-curious (HBC), meaning that they
will follow the protocol’s instructions but are interested in
obtaining information from the messages exchanged during the
computation. The threat model assumes that an adversary may
attempt to learn information about the inputs and intermediate
computations of other parties, however, the HBC model has
limitations as it is not capable of sending falsified messages.
Even when compared to a passive adversary, the HBC adver-
sary is still more restricted as it cannot intercept messages
from arbitrary communication channels, and can only receive
messages that are intended for it. To guarantee that the compu-
tation is secure and that no party can obtain information about
the other parties’ inputs or intermediate computations, the
SMC framework uses cryptographic techniques. Secret sharing
is one such technique, in which each party shares their input
with the other parties in such a way that no one party has the
entire secret. This ensures that no party has full knowledge of
another party’s input. It also assumes that the communication
channels between parties are secure, and messages cannot be
intercepted or altered by an external attacker. This assumption

in our case is limited to our SMC model as all communication
between parties happens through a module that was provided
and we have no proof of its security.

III. IMPLEMENTATION DETAILS

In our implementation of the SMC we start by first im-
plementing the Expression module where we define the
abstract syntax tree for arithmetic expressions used in the SMC
protocol. It has sub-classes for ”Secret” and ”Scalar” variables
and it defines the representation of the operations we need in
our SMC such as addition, subtraction, and multiplication. The
secret_sharing module offers a secret sharing scheme
that splits a secret value into shares and distributes them
among multiple parties. This module provides a Share class
that represents a single share of the secret value or a scalar.
Besides defining the protocols for our three operations, this
module also provides functions for splitting a ”Share” and
reconstructing the original secret value from the shares. The
SMCParty is the main class that implements an SMC client.
It takes as input a client ID, the host-name and port of the
server, a protocol specification, and a dictionary of secret
values to be used in the protocol. The class makes use of
the secret_sharing class for splitting secrets into shares
and then it sends them to other participants. Depending on
whether the Share is a scalar or a secret, the reconstruc-
tion is done accordingly by the use of the dictionary and
the Communication class. It also implements methods
for processing expressions using the visitor pattern, and for
performing multiplication using the Beaver triplet protocol
generated by a trusted third party. The class communicates
with the server and other clients using the Communication
class which was provided for this project.

IV. PERFORMANCE EVALUATION

To evaluate the performance of our SMC implementation,
we collected data on both communication (bytes sent and
received) and computation time.

Nr. Runtime Byte Sent Byte Received

1
15.26 (2.01) 15.68 (7.51) 62.72 (7.51)

10246 (17.89) 15.72 (7.59) 62.88 (7.60)

10
52,68 (78.9) 15.6 (7.34) 62.4 (7.34)

10245 (19.95) 15.72 (7.59) 62.88 (7.60)

100
16.68 (4.35) 15.72 (7.59) 62.88 (7.60)

10230 (28.10) 15.60 (7.35) 62.40 (7.37)

500
17.49 (3.04) 15.64 (7.43) 62.56 (7.43)

10252 (19.47) 15.64 (7.43) 62.56 (7.46)

TABLE I: Addition of Scalars.



Nr. Runtime Byte Sent Byte Received

1
241 (40.33) 54.8 (49.7) 56.12 (12.46)

17570 (994.92) 54.96 (49.83) 146.52 (12.44)

10
89.49 (83.38) 273 (2.56) 364.56 (2.00)

42960 (187.51) 273.92 (1.8) 365.12 (1.92)

100
526.6 (94.37) 2461.6 (6.02) 2553.28 (6.43)

338167 (912.68) 2462 (4.75) 2553 (4.70)

500
1783.85 (112.86) 12186 (13.46) 12277.08 (12.19)

1649843 (2676.92) 12192 (12.33) 12283 (11.66)

TABLE II: Addition of Secrets.

Number Runtime Byte Sent Byte Received

1
18.54 (3.56) 15.68 (7.51) 62.72 (7.52)

10950 (17.03) 15.68 (7.51) 62.72 (7.52)

10
32.07 (28.08) 15.72 (7.60) 62.88 (7.62)
10246 (18.44) 15.64 (7.43) 62.56 (7.43)

100
40.60 (28.15) 12 (0.0) 48 (0.0)
10254 (16.88) 12 (0.0) 48 (0.0)

500
194.17 (94.75) 12 (0.0) 48 (0.0)
10272 (18.33) 12 (0.0) 48 (0.0)

TABLE III: Multiplication of Scalars.

Number Runtime Byte Sent Byte Received

1
233.02 (2.53) 54.76 (49.73) 146.08 (12.69)

17589 (993.27) 54.4 (49.4) 145.12 (12.46)

2
491.95 (172.66) 139.60 (60.75) 413.08
42488 (954.45) 139.88 (60.53) 413.84 (15.44)

5
510 (311.67) 395.40 (2.7) 1217.04 (2.68)

116532 (207.26) 395.08 (1.49) 1216.48 (3.26)

10
1445.44 (414.19) 819.80 (2.88) 2551.16 (5.52)
245669 (325.26) 820 (2.66) 2552 (4.39)

20
2669.29 (978.9) 1172.36 (4.97) 5229.64 (8.15)
503353 (500.43) 1672 (4.51) 5229 (7.61)

TABLE IV: Multiplication of Secrets.

Number Runtime Byte Sent Byte Received

2
50.15 (64.76) 121.8 (1.13) 137.00 (16.69)

19737.52 (1089.87) 120.9 (1.79) 136.10 (16.22)

5
554.68 (146.45) 139.76 (64.05) 437 (25.05)

44189.81 (1079.37) 139.88 (60.78) 438.08 (24.82)

10
493.26 (97.21) 146.12 (110.50) 904.84 (19.83)

85657.25 (510.73) 145.94 (110.69) 902.28 (19.48)

20
553.76 (43.80) 147.66 (145.68) 1358.81 (17.13)

125843.22 (739.72) 152.82 (150.77) 1361.89 (16.78)

25
1042.76 (47.35) 149.6 (198.28) 2280.68 (14.20)

207182.45 (1555.63) 150.12 (199.38) 2278.27 (13.73)

TABLE V: Varying number of parties.

We conducted five experiments to evaluate the performance
of the SMC under different scenarios involving varying num-
bers of additions, multiplications, and parties. The experiments
were run on two different machines to observe the effect of
hardware on the results, and were limited to five iterations

due to time constraints (approximately 7 hours on the slower
machine). The results are presented in five tables.

Table I shows the runtime of the SMC with different
numbers of additions of scalars using five clients. The runtime
(in milliseconds) remains relatively constant as each party adds
the scalars locally. However, the hardware has a significant
impact on performance, with the faster (blue) machine running
approximately 190 times faster than the slower machine (red).

Table II presents the results of testing for addition of secrets
using the same set of numbers (1, 10, 100, 500). This test takes
longer as secrets need to be sent to other participants. The
faster machine performs approximately 60 times better than
the slower machine. Notably, the amount of data transferred
between the machines is almost the same, indicating that the
hardware is slow but not faulty.

Table III and Table IV evaluate the runtime for scalar and
secret multiplication, respectively. Scalar multiplication has a
similar runtime to addition, but secret multiplication takes
significantly longer due to the use of Beaver triplets. The
number of bytes exchanged increases linearly with the number
of multiplications.

Finally, Table V varies the number of parties involved in
the computation. The same expression, including all available
SMC operations, is used. As expected, adding more parties
increases the runtime, but it remains cheaper than secret
multiplication.

V. APPLICATION

Secure Multiparty Computation (SMC) can be used to se-
curely share a symmetric session key among multiple parties.
The parties use an expression and random secrets to compute
the result, which is used as the session key to encrypt messages
that can only be decrypted by the intended recipients. Since
the secrets are random and the goal is to send private messages
among the clients, passive adversaries can only learn the result
of the expression and maybe the random secrets, which are not
useful to them. In the case of aggressive adversaries, they can
only give incorrect results of the expression, which is easily
noticeable when attempting to encrypt and decrypt values with
an incorrect key.

Regarding adversaries outside the clients, there could be
potential privacy leaks that are not covered by SMC. To
mitigate this, additional security measures such as encryption
and authentication could be employed. With a simple imple-
mentation, any circuit would allow the generation of a shared
key as long as each participant knows it.


	Introduction
	Threat model
	Implementation details
	Performance evaluation
	Application

