
CS-523 SecretStroll Report
Florian Delavy , Endrit Vorfaj

Abstract—Handling location data, given its high dimensionality
and sensitivity, necessitates careful privacy-preserving designs for
Points of Interest (POI) recommendations. In this project, we
tackle the challenge of processing sensitive user data securely.
Our focus lies on three crucial aspects: the authentication system,
data storage and type, and client-server communication. Our
goal is to establish a resilient system that can address potential
privacy concerns related to location-based services and ensure
confidentiality under a specific threat model.

I. INTRODUCTION

Location data, due to its personal nature and complexity, is
highly sensitive and requires meticulous handling, especially
in location-based recommendation systems. Our project strives
to provide privacy-preserving mechanisms within these appli-
cations. Our specific focus revolves around enhancing user
privacy during the authentication, data storage, and client-
server communication processes. This includes deploying an
attribute credential scheme for optimal subscription security
and user anonymity. We’ll also scrutinize potential weak spots
in the client-server communication, even when using Tor for
heightened security. Subsequently, we’ll explore strategies to
safeguard against exploit attempts by attackers.

II. ATTRIBUTE-BASED CREDENTIAL

To maintain compact attribute size and boost security, the
AttributeMap was structured as a dictionary which contains
attributes encoded using a hashed, positive Bn value, ensuring
simplicity and compatibility with the petrelic library. Each
attribute in the AttributeMap is also provided an index to
streamline attribute retrieval during subsequent searches. By
adopting this method, only crucial data is transmitted and
hashed, lowering the possibility of an adversary discerning
exact subscription details. The decision to omit the client’s
username was made to increase anonymity further. To obstruct
attackers from figuring out a client’s subscription count, one
potential approach would be to insert a random quantity of
dummy attributes at the time of registration, creating noise.
However, this specific implementation was not undertaken due
to time limitations.

A. Non-interaction

In accordance with the ABC guide, the Pointcheval-Sanders
scheme was implemented, and it was recommended to apply
the Fiat-Shamir heuristic to the corresponding Sigma protocol
in step 4. This application serves to prove to the server that
the computation of C has been performed correctly. Drawing
from the exercises introduced during the week of Anonymous
authentication, we can conclude that the Pedersen protocol,
combined with the aforementioned heuristic, is suitable for
our code.

Referring to the exercise solutions, we calculate the chal-
lenge c by hashing all the values of the public key, as well as
the prover’s commitment R and the commit value C. This
allows the server to verify C without requiring additional
challenges to be sent. In the second proof, the same principle
is applied, but with the inclusion of the client’s message (i.e.,
the latitude and longitude coordinates). This additional layer
of security becomes necessary as the attacker would require
this information to compromise the system.

B. Test

To thoroughly test the developed code, three files
were created: test_credentials, test_stroll and
test_performance. The test_credentials file fo-
cuses on verifying the functionality of the functions imple-
mented in credential.py. It includes individual tests for
small functions such as generate_key(),sign(), and
verify(). Additionally, a comprehensive function tests the
entire process of the PS protocol, considering various scenarios
involving incorrect AttributeMap, public and secret keys, and
invalid signatures. Random attribute generation is utilized in
these tests, and each test is executed one hundred times to
ensure reliable results and to mitigate any chance successes.

On the other hand, test_stroll employs a less random
approach to assess the behavior of stroll.py with more
realistic attributes and potential errors. The tests in this file also
iterate one hundred times to detect any anomalies effectively.

Assessing the performance of our tests can involve check-
ing coverage. However, since the scheme primarily involves
integer multiplications, relying solely on simple statement
coverage might overlook edge cases related to overflow and
underflow. To address this, a more elaborate and resource-
intensive approach could include verifying the values gener-
ated by the tests in stroll.py and credential.py. This
approach, in addition to coverage analysis, ensures that all
possible edge effects have been considered, thereby confirming
the robustness of our code.

C. Evaluation

To gather performance statistics on our code, we have
developed a file named test_performance. This file
conducts key generation, issuance, signing, and verification
operations to assess their efficiency. It focuses solely on the
code’s performance without involving real communication, as
network performance could introduce additional variables. The
data collected for the tests was obtained from executing them
on a x86 64 architecture with 4 cores.



1) Key Generation: The test_key_gen() evaluates the
performance of the generate_ca() function in the server.
Since the server only needs to send the public key to the
client, we focus on measuring the size of the public key as
an indicator of the communication cost. The function is called
with different numbers of initial attributes.

Fig. 1: Mean of the time of generate_ca() with it’s
standard deviation, in seconds

Nb Attributes 1 2 5 10 15 25
Nb Bytes 1088 1530 2856 5066 7276 11696

Nb Attributes 50 75 100 150 200
Nb Bytes 22746 33796 44846 66946 89046

TABLE I: Size of the public key generated by
generate_ca()

As seen in the previous plot and table, we can see that the
time of this function has a linear growth, as the size of the
public key. The size was also constant, thus has an std of 0.

2) Issuance Request: The test_issuance_req()
evaluates the performance of the
prepare_registration() and
process_registration_response() function of
the client as well as the process_registration()
function of the server. Since we are primarily interested in
the data exchanged between the client and server, we capture
the size of the blind signature and issuance request in bytes.
This allows us to assess the communication cost of these
functions.

Fig. 2: Mean of the time of the issuance with it’s standard
deviation, in seconds

Nb Attributes 1 2 5 10 15 25
Issue Request 553 657 969 1489 2014 3084

Blind Sign 412 412 412 412 412 412

Nb Attributes 50 75 100 150 200
Issue Request 5689 8314 10939 16239 21539

Blind Sign 412 412 412 412 412

TABLE II: Size of the Issue Request and the Blind Signature
generated by issuance

The test test_issuance_req() demonstrates that the
execution time exhibits linear growth with a plateau at around
270 milliseconds. Interestingly, the size of the blind signature
remains constant across different numbers of attributes, with
a standard deviation of 0. This behavior can be attributed to
the design of the test, where the client registers and makes
requests for all attributes. As a result, the issuer AttributeMap
is always null, minimizing the size of the blind signature to
its maximum extent.

3) Showing: The test test_showing() measures the
performance of the the sign_request() function of the
client, capturing the size of the disclosure proof, in bytes.

Fig. 3: Mean of the time of sign_request() with it’s
standard deviation, in seconds

Here we can see a curious peak at a 100 attributes. Fur-
thermore, the size of the disclosure proof for any number of



attributes is equal to 659 bytes, with the same explanation of
the size of the blind signature, as discussed previously.

4) Verification: The test test_verification()
measures the performance of the the
check_request_signature function of the server.
We can see in the figure below a linear. time

Fig. 4: Mean of the time of
check_request_signature() with it’s standard
deviation

III. (DE)ANONYMIZATION OF USER TRAJECTORIES

A. Privacy Evaluation

For this project, we were supplied with two datasets:
queries.csv, which includes user queries along with precise
location data, and pois.csv, which provides the grid cell ID
for each query, among other information. The distribution
of Points of Interest (POI) types present in these datasets is
depicted in Figure 5.

The objective is to utilize this data to investigate potential
breaches of user’s privacy by identifying patterns that might
disclose sensitive information, such as users’ home addresses,
workplaces, or personal interests. We make the assumption
that an adversary, such as an Internet Service Provider (ISP),
could have access to the network traffic on the server-side,
thereby obtaining the same data provided to us.

Fig. 5: Data-set description

This gives us the basis for a de-anonymization attack based
on the notion that knowing a person’s home and work address
could with high probability lead to an identification alias.
Given the uniqueness of each IP address to a user, we could
exploit the latitude and longitude information to pinpoint user
locations. Subsequently, temporal patterns in user activity,
derived from the timestamp data, may reveal insights into their
movements.

We propose using the time of the day (specifically, night-
time) and the day of the week (weekday or weekend) as
proxies for determining whether a particular location is likely
a user’s home or workplace. A commonly observed working
time interval, such as 8 AM to 5 PM, provides a useful
heuristic for this distinction.

The initial step in our strategy involves cleaning and trans-
forming the data. We utilize the timestamp to extract the
hour of the day (using timestamp % 24) and to calculate the
number of hours elapsed in the week (via timestamp % 168).
This allows us to assign a ’day type’ to each query (either
’weekday’ or ’weekend’).

The second phase of our strategy seeks to identify a user’s
frequent locations. Here, we take into consideration the stan-
dard working hours (8 AM to 5 PM) and weekdays as criteria
for identifying likely workplaces. Similarly, we use night hours
and weekends to deduce probable home locations.

Fig. 6: Frequency of queries at different times of a day

By counting the number of queries made during these
periods, we are able to form an idea regarding whether a
particular location is likely to be a home or work address.



Figure 6 presents the frequency of queries at different times
of the day, enabling us to distinguish between work and home
times. Through this approach, we aim to tackle on the potential
privacy implications of our data and in the subsequent section
we propose countermeasures to safeguard user information or
at least mitigate the risks.

B. Defences

In this part we aim to introduce a defense mechanism that
modifies data to provide anonymity and reduce linkability. Our
approach is founded on the premise that the existing location
and timestamp data can be exploited to recover user identities,
as seen in the previous section. This mechanism is expected to
mitigate attacks that leverage precise location and timestamp
to compromise user privacy.

The defense we propose involves the modification of how
location data is managed. Instead of storing the exact location
(latitude and longitude) of each user’s Point of Interest (POI)
query, the server could save this data using a grid cell ID
system. The geographical space is partitioned into grid cells,
with each cell being uniquely identified by an ID. In technical
terms, the longitude and latitude are given to us with extreme
accuracy (down to the millimeter). If we use grid IDs, we split
the area into a 10 by 10 grid space and the total size of this area
is 0.10 longitude and 0.077 for latitude which is equivalent
to 1km and 770m respectively in real map. Consequently,
the server would simply need to match the user’s location
with a corresponding grid cell ID when responding to a POI
query. This approach retains service utility while significantly
enhancing anonymity.

We define privacy as the degree of location indistinguisha-
bility and unlinkability as well as user activity anonymity. By
replacing precise location data with grid cells, we increase the
indistinguishability, making it more difficult for an adversary
to accurately pinpoint a user based on their queries. We when
we used grid cells instead of exact coordinates, the size of
the anonymity set increased. Specifically, we found that many
home/work pairs had more than one associated IP address,
thereby increasing anonymity and privacy for users.

Home Work

Grid-Cell avg: 3.63 5.63
Lat & Long avg: 1.25 3.57

Original Timestamp: 1.092 1.092
Reduced Timestamp: 3.44 3.44

TABLE III: Average anonymity-set size when using: grid cells
vs lat & long and reduced vs original timestamp

In Table III we see that we have greater anonymity set
size when we use grid cells for both home and work address
compared to using exact location. Also we see that the
anonymity is greater we only consider the day type instead
of exact time.

Under our proposed defense, the service’s utility should re-
main unaffected for most applications, as there’s no significant
additional benefit in storing precise location data over storing

grid cell IDs. However, in specific use cases, like military
applications where exact locations might be needed, using grid
cells could lead to a decrease in utility. However, there’s an
inherent privacy-utility trade-off involved. While the use of
grid cells and the omission of timestamps can increase privacy,
these modifications might adversely impact the service’s utility
in certain scenarios. For instance, removing timestamps might
limit an application’s ability to offer time-dependent services
or insights.

IV. CELL FINGERPRINTING VIA NETWORK TRAFFIC
ANALYSIS

A. Implementation details

The first step of implementation is to collect the data that
we’ll be using to train our model. We used tcpdump in a
shell script to capture the packets over all grid cell IDs and
we create a .pcap file for each captured trace. We noticed
that the captured traces contain many packets (ACK packets,
ARP, DNS, etc) that are practically useless for our model as
they do not provide information about the exchanged data. It
is for this reason that we only keep the TCP packets from
every capture, precisely we keep the packets that have a TCP
payload and the header (64 bytes). Once we have this data,
we do some data cleaning and transformation so that we end
up with essential features that could increase the accuracy of
the model. To achieve that, we use z-score (which tells us how
many standard deviations a data point is from the mean in a
distribution) to detect any outliers (z-score ¿ 3).

Fig. 7: Cleaned data with z-score

In Fig 7, we can see the clean collected data which contains
no outliers. Based on the count of the initial traces, we went
from having 3604 traces to 3571, so we had 33 outliers which
were removed.

The second step in the implementation is to extract im-
portant features from the cleaned data. The way we do this
is by first getting the very first packet’s timestamp for each
trace and then we save a tuple of (packet size, time) in a list
which represents once trace. The way we distinguish between
a packet being sent and one being received is that we multiply
by 1 the packet size if the IP address is private (meaning it
is coming from a client) otherwise we multiply by -1. Since
the communication between client and server is not ”stop and
wait”, we can have cases where client sends multiple packets
of same payload before receiving from the server and we end
up with way too much data to store in a raw format. Since
we can distinguish between packets being sent and received,
we decided to group them into rounds where each round



represents and entire payload being sent. This was achieved
by grouping sequential packets of same size and adding them
to form one payload. To have a ”square” size dataframe, we
needed to know the maximum number of rounds we can have
and for that we have a get_max_rounds() function which
calculates that. In the end we end up with a data-frame of the
form:

Cell ID
Packet Count

Time
Number Rounds
Round Size[253]
Round Time[253]

TABLE IV: Final dataset that we use for the model

In Table IV we have all the rounds (253) and we store the
payload sent and received for each round as well as the time
when the exchange happened. This will serve as the features
for the training model.

B. Evaluation

The model we use for our data is
RandomForestClassifier which comes from the
sklearn python library. To evaluate the model we have 3
performane metrics:

• Global Accuracy: this measures the average of predicted
labels that correspond to the correct test labels.

• Top 2 accuracy: this metric allows for more prediction
margin as it is not a one to one prediction-test but it
considers a prediction to be correct if one of the top 2
predictions for a label are correct.

• Top 10 accuracy: Similar to Top 2 with the sole differ-
ence being that it considers the top 10 most probable
predictions.

We initially trained the model in all the features and we had
the following results:

Measurement Score
Accuracy 0.66

Top 2 0.73
Top 10 0.87

TABLE V: All features metrics

In our second try we removed the round time all together
and we had slightly better results:

Measurement Score
Accuracy 0.73

Top 2 0.79
Top 10 0.90

TABLE VI: No round time metrics

Finally, we drop every other feature and we only keep the
round size and the cell id. We get the following results:

Measurement Score
Accuracy 0.747

Top 2 0.80
Top 10 0.90

TABLE VII: Only Round size feature

C. Discussion and Countermeasures

As we can see in Table V, not all features are needed to
increase the accuracy of our model. That is because same as
we did with traces where we only keep the TCP packets and
we drop packets that don’t aid to our application, in a similar
way we also have redundant features here that could worsen
our model’s accuracy. One of them being the round time since
as we mentioned before, payloads are sent in multiple packets
and they might not be of the same size, so the time is not
a reliable features in this case. Indeed we notice in Table VI
that the accuracy of our model increases when we drop the
round time feature. At the end, since the data exchanged is
encrypted, it makes sense that the most important feature is
the round size as it is the only feature that gives us insight
on the exchanges between client and server. We can see this
in Table VII where we notice that the metrics have increased
compared to the others.

Considering countermeasures against this model requires
revisiting our approach to feature extraction. The high di-
mensionality of the data is attributable to the sequence of
round sizes, which reveals the number and types of Points of
Interest (POIs) and their respective ratings. To mitigate this, we
could shuffle the list of returned PoIs from the server, thereby
ensuring that the client does not query them in the same order
each time. This modification would not compromise utility.
An alternative approach might be to limit the amount of rating
information sent for each POI. Providing key statistics rather
than comprehensive ratings would both reduce and normalize
the size of each round. Lastly, the ”round” nature of the
process reveals information. We could prompt the client to
query multiple POIs simultaneously, rather than in successive
rounds, to make it more challenging to discern the signal of
a round query.

V. CONTRIBUTION

F.D has implemented the code of credential.py, the
three tests of part 1 and has done the capture for the part 3.
E.V have made the analysis of part 2 and designed the code
of stroll.py. The two of us has worked on the extraction
of the features and the training of the model of part 3 as well
as working of the report.

REFERENCES

[1] Advanced Topics on Privacy-Enhancing Technologies CS-523 Anony-
mous Authentication Exercises - Solutions, https://moodle.epfl.ch/
pluginfile.php/3056481/mod resource/content/3/anon exe sol.pdf

https://moodle.epfl.ch/pluginfile.php/3056481/mod_resource/content/3/anon_exe_sol.pdf
https://moodle.epfl.ch/pluginfile.php/3056481/mod_resource/content/3/anon_exe_sol.pdf

	Introduction
	Attribute-based credential
	Non-interaction
	Test
	Evaluation
	Key Generation
	Issuance Request
	Showing
	Verification


	(De)Anonymization of User Trajectories
	Privacy Evaluation
	Defences

	Cell Fingerprinting via Network Traffic Analysis
	Implementation details
	Evaluation
	Discussion and Countermeasures

	Contribution
	References

